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Abstract
In this paper, we consider a particular aspect of the relationship between mean
field and finite-dimensional spin glasses. By means of a simple interpolation
method, we prove that the free energy of a class of finite-dimensional spin
glass models with Kac-type interactions is bounded below by that of their
mean field analogue. As a result, Parisi theory of replica symmetry breaking
can be exploited in order to give bounds on their free energy and ground state
energy. Similar results hold for diluted versions of the systems.

PACS numbers: 75.10.Nr, 05.20.−y, 05.50+q

1. Introduction

The relationship between finite-range and mean field models is one of the most debated issues
in the field of spin glass systems (see, for instance, [1–3] for different points of view in this
controversy). In particular, one would like to understand whether, and to what extent, the
picture one gains from the study of the mean field Sherrington–Kirkpatrick model [4] (e.g.,
ultrametric organization of the equilibrium states, replica symmetry breaking [5]) applies to
the Edwards–Anderson [6] model, at least when the space dimensionality is sufficiently high.
The scope of the present paper is more modest, and we study the relation between the free
energy of the mean field and that of some finite-dimensional models, having in mind especially
the case where the interaction range diverges. This is a very natural question to ask, which
in the context of translation-invariant, non-disordered systems was studied a long time ago
by Lebowitz and Penrose [7]. Lebowitz and Penrose [7] considered systems of particles
interacting via a two-body potential of Kac type [8], whose interaction range can tend to
infinity while the total strength remains constant. Under broad conditions, they proved that in
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this limit the infinite-volume free energy density approaches that corresponding to the mean
field theory of van der Waals (or, in the case of spin systems, of Curie and Weiss).

Spin glass models with Kac-type interaction have already been considered in the literature
[9–11]. In particular, it was proved that, at sufficiently high temperature and zero magnetic
field, the free energy of the Sherrington–Kirkpatrick model coincides with that of its Kac-type
analogue, in the infinite-range limit. However, we are not aware of more general results valid
at low temperature and in the presence of an external field. In the present paper, we consider
the Sherrington–Kirkpatrick and the diluted Viana–Bray [12] mean field models, and their
Kac-type counterparts. Our main result is that, under some conditions on the interaction, the
free energy of the mean field models is a lower bound for that of the corresponding finite-
dimensional Kac-type one, at any β and h. In particular, this implies that ‘broken replica
symmetry bounds’, such as those proved in [13, 14] for the mean field models, hold also for
the finite-dimensional systems.

Our proof is based on very simple interpolation ideas, such as those employed for instance
in [13, 15].

2. The Kac–SK model

Let us define the Kac–SK Hamiltonian introduced in [9, 10]. The model lives on the
ν-dimensional lattice Z

ν , and the elementary degrees of freedom are Ising spins σi = ±1, i ∈
Z

ν . Given γ > 0 and any finite subset � ⊂ Z
ν of cardinality |�|, we define the finite volume

Hamiltonian as

H
(γ )

� (σ, h; J ) = − 1√
2W(γ )

∑
i,j∈�

√
w(i − j ; γ )Jijσiσj − h

∑
i∈�

σi. (1)

Here,

W(γ ) =
∑
i∈Z

ν

w(i; γ ) (2)

and

w(r; γ ) = γ νφ(γ r) (3)

for some smooth, non-negative and normalized real function φ:

φ(r) � 0 (4)∫
φ(r) dνr =

∫
w(r; γ ) dνr = 1. (5)

For reasons of simplicity, we also require that

φ(r) � C e−C ′ |r| (6)

for some positive constants C,C ′. The Jij are i.i.d. Gaussian random variables with mean zero
and unit variance. Note that Jij is independent of Jji , for i �= j . The parameter γ represents
the effective inverse interaction range, since the variance of the coupling

√
w(i − j ; γ )Jij

decays to zero over a distance of order γ −1. Due to the smoothness of φ(r), one has

W(γ ) =
∫

φ(r) dνr + o(γ ) = 1 + o(γ ).

On the other hand, recall that the Hamiltonian of the Sherrington–Kirkpatrick model is
defined as

H SK
� (σ, h; J ) = − 1√

2|�|
∑
i,j∈�

Jijσiσj − h
∑
i∈�

σi. (7)
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Of course, the lattice structure is completely irrelevant in this case, and the reason why we
write the Hamiltonian in form (7) is to make the comparison with the Kac–SK model more
transparent.

As usual, for a given inverse temperature β one introduces the disorder-dependent partition
function Z�, the Boltzmann–Gibbs state ωJ (·) and the quenched free energy density f� as

Z
(γ )

� (β, h; J ) =
∑

σ

e−βH(γ )(σ,h;J ) (8)

ωJ (A) = (
Z

(γ )

�

)−1 ∑
σ

A(σ) e−βH(γ )(σ,h;J ) (9)

f
(γ )

� (β, h) = − 1

β|�|E ln Z
(γ )

� (β, h; J ) (10)

where A is a generic observable and E denotes expectation with respect to the disorder J .
We are considering free boundary conditions for simplicity. Moreover, consider a generic
number n of independent copies (replicas) of the system, characterized by the spin variables
σ 1

i , σ 2
i , . . . , σ

(n)
i , distributed according to the product Boltzmann–Gibbs state

�J = ω1
J ω2

J . . . ωn
J (11)

where each ωa
J (·) acts on the corresponding set of σa

i , and all replicas are subject to the same
disorder realization. For a generic smooth function F of the configurations of the n replicas,
we define the 〈·〉 averages as

〈F(σ 1, . . . , σ n)〉 = E�J (F (σ 1, . . . , σ n)). (12)

Similar definitions can be introduced for the Sherrington–Kirkpatrick model.
As is well known [16, 17] the infinite-volume limit

f (γ )(β, h) = lim
�↑Z

ν
f

(γ )

� (β, h) (13)

exists, and is independent of the way � grows, provided that � ↑ Z
ν in the sense of van Hove

[18]. In particular, we can choose �L to be the ν-dimensional hypercube {−L, . . . , L}ν of side
2L + 1, with L ∈ N, and let L → ∞. On the other hand, the existence of the thermodynamic
limit

f SK(β, h) = lim
|�|→∞

f SK
� (β, h) (14)

for the Sherrington–Kirkpatrick model was proved in [15]. Therefore, it is very natural to
compare the two infinite-volume free energy densities, especially in the limit γ → 0, where
the interaction range of the Kac–SK model diverges and the system is expected to resemble its
mean field counterpart. To do so, we need to put a further restriction on the potential w(r; γ ).
Given k ∈ �L and a function g defined on �L, define the Fourier transform of g as

g̃L(k) =
∑
j∈�L

g(j) ei 2π
2L+1 kj (15)

so that

g(j) = 1

|�L|
∑
k∈�L

g̃L(k) e−i 2π
2L+1 kj ∀j ∈ �L. (16)

Then, we require that

w̃L(k; γ ) � o(|�L|−1) (17)
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uniformly in k, i.e. w(i − j ; γ ) is non-negative-definite, apart from a negligible error term
(a similar condition was used in [7], section 3). For instance, one can easily check that this
condition is satisfied by the potential originally introduced by Kac et al [8], and later used in
[9] in the context of spin glasses, which corresponds to ν = 1 and

w(r; γ ) = γ

2
e−γ |r|.

Theorem 1. Assume that condition (17) holds. Then, for any β and h,

f (γ )(β, h) � f SK(β, h). (18)

In particular, in the Kac limit one has

lim inf
γ→0

f (γ )(β, h) � f SK(β, h). (19)

Of course, one would also like to prove that

lim
γ→0

f (γ )(β, h) = f SK(β, h)

but this has not been possible so far (for partial results in this direction, in the case of high
temperature and zero magnetic field, see [9, 10]).

In [13], it was shown that the Parisi solution, with an arbitrary number of steps of replica
symmetry breaking, is a rigorous lower bound for the infinite-volume free energy of the
Sherrington–Kirkpatrick model. Therefore, theorem 1 immediately implies

Corollary 1. For any functional order parameter x [5, 13], one has

f (γ )(β, h) � −β−1ᾱ(β, h; x) (20)

where ᾱ is the Parisi trial functional, as defined in [13].

In particular, letting β → ∞, corollary 1 implies that the ground state energy density −e
(γ )

0 (h)

of the Kac–SK model is bounded below by the ground state energy of the Parisi solution for
the Sherrington–Kirkpatrick model [5]:

e
(γ )

0 (h) � 0.7633 . . . . (21)

Let us emphasize that, in contrast with the mean field case, inequalities (20) and (21) are not
expected to give tight bounds for finite γ .

3. The diluted Kac–SK model

The Sherrington–Kirkpatrick model is a fully connected mean field spin glass, in the sense that
every spin interacts with any other spin of the system, irrespective of their mutual distance.
A lot of attention is presently devoted to diluted mean field spin glasses, especially for their
connection with combinatorial optimization problems. In this case, a given spin interacts only
with a finite number of other sites, even in the thermodynamic limit. The mean field character
stems from the fact that these sites are chosen randomly among the N − 1 possible ones.

The diluted version of the Sherrington–Kirkpatrick model was first introduced by Viana
and Bray in [12]. For this work, it is convenient to define it in a way that differs slightly from
the original one. Let α be a positive number (average connectivity) and let ξ i

α, i = 1, 2 . . . , |�|,
be i.i.d. Poisson random variables of mean value α. ξ i

α � 0 represents the (random)
number of sites which interact with the spin σi . The locations of these sites, denoted by
j i
µi

, µi = 1, . . . , ξ i
α , are chosen independently and uniformly in {1, . . . , |�|}. Finally, the
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values of the interaction couplings are i.i.d. centred random variables J i
µi

. The resulting
Hamiltonian is therefore

H VB
� (σ, h, α;J ) = −

∑
i∈�

σi

ξ i
α∑

µi=1

J i
µi

σj i
µi

− h
∑
i∈�

σi. (22)

For simplicity, we assume the J i
µi

to be Bernoulli variables J i
µ = ±1, but more general

situations can be considered. We denote by J the dependence of the Hamiltonian on the
whole set of quenched disordered variables ξ i

α, j i
µi

, J i
µi

. The existence of the thermodynamic
limit for the quenched free energy density f VB

� (β, h, α) of the Viana–Bray model was proved
by Franz and Leone in [14], by means of a smart interpolation method which exploits simple
properties of Poisson random variables.

Keeping the above definitions in mind, it is natural to introduce the finite-range Kac
analogue of the Viana–Bray model as follows. For any site i, extract a Poisson variable ξ i

α .
The ξ i

α sites j i
µi

which interact with i are chosen in Z
ν with weights

P
(
j i
µi

= j
) = w(j − i; γ )

W(γ )

where w is defined as in the previous section. An interaction J i
µi

is assigned to the couple(
i, j i

µi

)
only if j i

µi
falls inside �. The Hamiltonian of the model is therefore

H
(γ )

� (σ, h, α;J ) = −
∑
i∈�

σi

ξ i
α∑

µi=1

χ
(
j i
µi

;�
)
J i

µi
σj i

µi
− h

∑
i∈�

σi (23)

where

χ(j ;�) = 1 if j ∈ � χ(j ;�) = 0 if j /∈ �.

In analogy with theorem 1, one can prove the following:

Theorem 2. If condition (17) holds, then for any β, h, α, one has

f (γ )(β, h, α) � f VB(β, h, α). (24)

Also in this case, from the ‘broken replica symmetry bounds’ for the mean field diluted model
[14], it follows that the Parisi solution is a lower bound for the infinite-volume free energy
density of the finite-range model for any γ .

4. Proof of the results

Proof of theorem 1. The idea of the proof is to interpolate between the Kac–SK and the
Sherrington–Kirkpatrick free energies. Then, assumption (17) will imply that the derivative
with respect to the interpolating parameter has a non-negative sign, whence the statement of
the theorem.

For 0 � t � 1, define the auxiliary partition function

Z�(t) =
∑

σ

exp β


√

t

2

∑
i,j∈�

√
w(i − j ; γ )

W(γ )
Jijσiσj +

√
1 − t

2|�|
∑
i,j∈�

J ′
ij σiσj + h

∑
i∈�

σi




(25)
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where J ′
ij are independent copies of the random variables Jij . To simplify notation, we write

� instead of �L. Of course, one has

− 1

β|�|E ln Z�(1) = f
(γ )

� (β, h) (26)

− 1

β|�|E ln Z�(0) = f SK
� (β, h). (27)

Employing integration by parts on the Gaussian disorder, for instance in [20], the t derivative
is found to be

− d

dt

1

β|�|E ln Z�(t) = −β

4


 1

|�|
∑
i,j∈�

w(i − j ; γ )

W(γ )

(
1 − 〈

σ 1
i σ 2

i σ 1
j σ 2

j

〉) − (
1 − 〈

q2
12

〉) (28)

where

q12 ≡ |�|−1
∑
i∈�

σ 1
i σ 2

i

denotes the overlap between the two configurations σ 1, σ 2. From the translation invariance of
w and the fact that W(γ ) � ∞ (see equations (2) and (6)), it follows [7] that:

lim
L→∞

1

|�|
∑
i,j∈�

w(i − j ; γ ) = W(γ ). (29)

Now, let us deal with the remaining terms. Letting τi ≡ σ 1
i σ 2

i , one has the following:

Lemma 1.
1

|�|
∑
i,j∈�

w(i − j ; γ )
〈
σ 1

i σ 2
i σ 1

j σ 2
j

〉 = 1

|�|2
∑
k∈�

w̃�(k; γ )〈|τ̃�(k)|2〉 + o(1) (30)

where the term o(1) vanishes in the thermodynamic limit.

Therefore, since

lim
L→∞

w̃�(0; γ )

W(γ )
= 1

and

τ̃�(0) = |�|q12

one has

− d

dt

1

β|�|E ln Z�(t) = β

4|�|2
∑

k∈�,k �=0

w̃�(k; γ )

W(γ )
〈|τ̃�(k)|2〉 + o(1) � o(1) (31)

where we employed condition (17) to estimate the error term. The statement of the theorem
then immediately follows from integration on t between 0 and 1. �
Proof of lemma 1. Rewrite the lhs of equation (30) as

1

|�|
∑
l∈�

′∑
j∈�

w(l − j ; γ )〈τlτj 〉 + O(L−1/2) (32)

where the sum is restricted to those sites j whose distance from the boundary of �L is at least√
L. Recalling the definitions (15) and (16), one can further express (32) as

1

L3ν

′∑
j∈�

∑
k1, k2∈�

exp

(
−i

2π

2L + 1
(k1 + k2)j

)
〈τ̃�(k1)τ̃�(k2)〉w̃�(−k1; γ ) + O(L−1/2) (33)
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where we used the fact that, thanks to the restriction on j and to condition (6), one has∑
l∈�

w(l − j ; γ ) exp

(
−i

2π

2L + 1
k1(l − j)

)
= w̃�(−k1; γ ) + O(e−C

√
L). (34)

Finally, one removes the restriction on j in (33), producing another error term of order L−1/2,
and the statement of the lemma follows from summation over j , since τ̃�(−k) = τ̃ ∗

�(k). �

Remark. Note that, despite many similarities, there is an important difference between our
approach and that of Lebowitz and Penrose [7], in comparing the free energy densities of the
mean field model with that of the finite-range one. Indeed, their method is based on the fact
that the interaction between two sites i, j is a slowly varying function of i − j , for small
γ , whereas in our case it is only the variance of the interaction that satisfies this property,
while the couplings themselves oscillate due to the random sign of Jij . For this reason, the
Lebowitz and Penrose [7] work directly on the Hamiltonian of the Kac model, showing that it
can be approximated by the Curie–Weiss one, while we work on the disorder averaged internal
energy, in order to use integration by parts on the disorder as in (28).

Proof of theorem 2. The proof is conceptually very similar to that of theorem 1 and we sketch
only the main steps here. In order to keep the formulae readable, we restrict to the case h = 0,
the general situation presenting no additional difficulty.

The interpolating partition function Z�(t) takes, in this case, the form

Z�(t) =
∑

σ

exp
(−βH

(γ )

� (σ, h = 0, αt;J ) − βH VB
� (σ, h = 0, α(1 − t);J ′)

)
(35)

where the random variables J appearing in the Hamiltonian of the finite-range system are
chosen to be independent of those (J ′) of the mean field one. Note that the mean value of
the Poisson variables ξ i in the first term has been modified from α into αt , and in the second
term from α into α(1 − t). Of course, the analogue of equations (26) and (27) holds at the
boundary points t = 0, 1. In order to compute the derivative of the t-dependent free energy
as in (28), we need the following simple property of the probability distribution of a Poisson
random variable ξλ of mean value λ:

d

dλ
P (ξλ = k) = −P(ξλ = k) + P(ξλ = k − 1)(1 − δk,0) k = 0, 1, 2, . . . (36)

which follows from

P(ξλ = k) = e−λ λk

k!
. (37)

This trick proved to be very useful already in [14] and [19]. Then, one finds (we refer for
details to [19], where a similar computation is done)

d

dt

1

|�|E ln Z�(t) = α


ln cosh β


 1

|�|
∑
i,j∈�

w(j − i; γ )

W(γ )
− 1


 +

1

2

∞∑
n=1

tanh2n β

n

×

〈

q2
1...2n

〉 − 1

|�|
∑
i,j∈�

w(j − i; γ )

W(γ )

〈
σ 1

i . . . σ 2n
i σ 1

j . . . σ 2n
j

〉

 (38)

where q1...2n denotes the multi-overlap between 2n configurations:

q1...2n = |�|−1
∑
i∈�

σ 1
i . . . σ 2n

i . (39)
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The first term on the rhs of equation (38) vanishes in the thermodynamic limit, thanks to (29).
At this point, one employs lemma 1 (where this time τi ≡ σ 1

i . . . σ 2n
i ) and the convergence of

the series
∞∑

n=1

tanh2n β

n

for finite β, to deduce that

− d

dt

1

β|�|E ln Z�(t) � o(1) (40)

which concludes the proof. �

5. Conclusions

In this paper, we analysed a particular aspect of the relationship between finite-dimensional
and mean field spin glasses, namely, the comparison between their respective free energies.
In particular, we considered the (mean field) Sherrington–Kirkpatrick model and its diluted
Viana–Bray version on one hand, and their finite-dimensional counterparts with Kac-type
interactions on the other. Our result is that, under suitable conditions on the Kac potential,
the infinite-volume free energy density of the Kac-type models is bounded below by that of
the infinite-range ones. While this result does not attack the problem of the existence or the
nature of a phase transition in finite-ranged spin glasses, it shows nonetheless that Parisi’s
theory of replica symmetry breaking can be employed to obtain some non-trivial results for
realistic models, e.g., rigorous bounds for the ground state energy. It would be interesting to
compare these to numerical estimates from Monte Carlo simulations.

A very natural question to ask is whether the free energy of the finite-range system
converges to that of the mean field model in the Kac limit, i.e. when the interaction range
diverges. While this is believed to be true on physical grounds, a rigorous mathematical proof
seems to be quite difficult to find. Note that this result would immediately give a new and
independent proof of the existence of the infinite-volume limit for the Sherrington–Kirkpatrick
free energy, a problem which has remained open for a very long time and has been solved only
recently in [15].
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